Special Problem 4-6.5

The electric potential within some region is:

$$
\mathrm{V}(\bar{r})=x^{2}+y z \quad[\mathrm{~V}]
$$

Consider two contours in this same region:
The first contour $\left(C_{1}\right)$ extends from point P_{a}, located at $\bar{r}_{a}=3 \hat{a}_{x}-\hat{a}_{y}+2 \hat{a}_{z}$, to some point P_{b}.

The second contour $\left(C_{2}\right)$ extends from point P_{b} to the origin.

If the integration of the electric field along the second contour C_{2} is:

$$
\int_{c_{2}} E(\bar{r}) \cdot \overline{d \ell}=2.5 \mathrm{~V}
$$

Determine the value of the integration along the first contour C_{1} :

$$
\int_{c_{1}} \mathrm{E}(\bar{r}) \cdot \overline{d \ell}
$$

